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A simple one-dimensional model is constructed for polymer motion. It exhibits the crossover from reptation
to Rouse dynamics through gradually allowing hernia creation and annihilation. The model is treated by the
density matrix technique which permits an accurate finite-size-scaling analysis of the behavior of long
polymers.

DOI: 10.1103/PhysRevE.73.061802 PACS number�s�: 83.10.Kn, 05.10.�a, 61.25.Hq

I. INTRODUCTION

It has been known for some time that the universal prop-
erties of long polymers can be obtained from stochastic lat-
tice models, which in themselves are rather crude represen-
tations of the intricate polymeric motion. The reason is that
long polymers are critical �1� and in critical systems the uni-
versal properties are independent of the microscopic details.
There are basically two modes of motion for polymers. One
is reptation, which is the mechanism for polymers dissolved
in a gel and to a lesser extent for dense polymer melts. Here
the polymer is strongly confined and the main degree of
freedom is motion inside the confining tube. The other mode
applies for dilute solutions where the polymers can also
move freely sideways. This is usually called Rouse dynam-
ics. One can easily envision situations where a mix of these
two mechanisms is present.

The interesting aspect is that the two modes have different
and unusual dynamical exponents. In polymer motion the
dynamic exponent is related to the renewal time �. It in-
creases as ��Nz, where z is the dynamic exponent and N a
measure for the length of the chain. Whereas many models
have the dynamic exponent z=1, showing isotropy between
time and space, reptation has an exponent z=3. This value
has been a bit controversial, since viscosity measurements
point at z=3.4, whereas the theories agree on z=3. The dis-
crepancy has recently been removed �2� by an accurate
finite-size-scaling analysis using the density-matrix tech-
nique �DMRG� introduced by White �3�. Rouse dynamics, on
the other hand, is found to have the exponent z=2. It is
therefore interesting to study the crossover between these
two mechanisms and to find out how a mixing-in of Rouse
dynamics changes the dynamical exponent from z=3 to z
=2.

The most convenient model for reptation is the
Rubinstein-Duke �RD� model designed by Rubinstein �4�
and extended by Duke �5�, by introducing a driving field.
The mobile units, the reptons, only move along the tube that
the chain traces out in the lattice. The advantage of the model
is that the dimension d of the lattice, in which the polymer
chain is embedded, becomes a parameter, which influences
the behavior of the ends of the chain but not of the bulk. As
this parameter d is one of the details, having no influence on

the universal properties, one often studies �6� the case d=1,
although the RD model becomes somewhat artificial in a
one-dimensional embedding.

There are two forms of sideways motion of the reptons.
When a cell is occupied by three reptons the middle one can
enter a neighboring cell without crossing a barrier. This is
called hernia creation and the opposite process is hernia an-
nihilation. The other forms of sideway motion imply that the
chain crosses a barrier. These are the typical motions allowed
in Rouse dynamics. Within the spirit of the physics of the
RD model, hernia creation and annihilation should be al-
lowed, but that makes the model essentially more difficult.
For instance, the role of the embedding dimension cannot be
simply reduced to a parameter d, influencing only the ends of
the chain.

The usual argument to omit the hernia creation and anni-
hilation, is that these processes do not alter the universal
properties. This is likely to be true in larger d, where hernias
become a fraction of the possibilities for the chain, but in
d=1 they are of major importance as we will show in this
paper. In fact, the hernia creation and annihilation mimic the
role of Rouse dynamics in a one-dimensional embedding and
therefore it is a convenient mechanism to study the crossover
from reptation to Rouse dynamics.

The dynamic exponent z is obtained from the gap in the
spectrum of the master equation. Apart from this gap another
interesting quantity is the diffusion coefficient. We obtain
this from the model by studying the drift velocity in the limit
of a weak driving field. For reptation the diffusion coefficient
decays as N−2 for chains of length N, while for Rouse dy-
namics the diffusion is speeded up to N−1. Next to the cross-
over of the dynamic exponent, we study in this paper the
crossover of the diffusion exponent.

II. THE MODEL

The model is a one-dimensional chain of N+1 reptons,
connected by N links, �y1 , . . . ,yN�. The links are either in the
forward direction, yi=1, or in the backward direction yi
=−1, or have the value yi=0. The cases yi= ±1 are consid-
ered as taut links, while yi=0 is a slack link or an element of
stored length. The basic motion rule is the hopping of this
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stored length unit along the chain, by interchanging with taut
links. If it moves in the forward direction, its transition rate
is biased by a factor B�1, while the hopping rate in the
backward direction is decreased by the factor B−1�1. The
biases represent an external field driving the reptons of the
chain. At the end of the chain the links may change from
slack to taut and vice versa, thereby adding or subtracting an
element of stored length, again with a bias depending on the
direction of the transport of length. These motion rules form
the much studied RD model. Our element is that we allow a
neighboring pair of opposite taut links to change into a pair
of slack links and vice versa. We describe this as the annihi-
lation viz. creation of a hernia. The transition rate for hernia
creation/annihilation is h, multiplied with a bias based on the
sign of motion of the middle repton of the hernia.

Without hernia motion the RD model is a typical model
for reptation. The tube, which is the sequence of taut links,
can only be changed from the ends. This is a slow process,
since the taut links in the bulk have to wait until they happen
to drift to one of the ends before they can change their value.
Simple counting tells that the inner taut links need at least N2

repton moves, if they could renew themselves in a systematic
way. The change of configuration is, however, a diffusive
process in configuration space and therefore the average re-
newal time is N4 measured in single repton moves, or N3 in
chain updates. So the reptation renewal time ��N3. Obvi-
ously hernia creation and annihilation speed up the renewal
of the chain and the point of this note is to see how they can
overtake the reptation mechanism.

A similar global argument �6� yields that the pure RD
model �without hernia creation/annihilation� has a drift ve-
locity decaying as N−1, leading to an asymptotic N−2 behav-
ior for the diffusion coefficient.

III. THE MASTER EQUATION

Our model is, as all the hopping models, governed by the
master equation for the probability distribution P�Y� where
Y stands for the complete configuration �y1 , . . . ,yN�. It has
the form

�P�Y,t�
�t

= �
Y�

�W�Y�Y��P�Y�,t� − W�Y��Y�P�Y,t��

� �
Y�

M�Y,Y��P�Y�,t� . �1�

The W’s are the transitions rates and the matrix M contains
the gain terms �in the off-diagonal elements� and the loss
terms �on the diagonal�. Conservation of probability implies
that the sum over the columns of the matrix vanishes. So the
matrix has a zero eigenvalue and the eigenfunction corre-
sponding to this eigenvalue is the stationary state of the sys-
tem, to which every other initial state ultimately decays. The
matrix is nonsymmetric, due to the bias, which gives differ-
ent rates to a process and its inverse. Thus one has to distin-
guish between left and right eigenfunctions. The left eigen-
function belonging to the zero eigenvalue is trivial �all
components equal�; the problem is to find the right eigen-

function as the stationary state probability distribution.
The renewal time is given by the slowest decaying eigen-

state. Thus the gap in the spectrum near zero is the inverse
renewal time. All eigenvalues must have, of course, a nega-
tive real part, otherwise probability would grow unlimited.
The form �1� stresses the similarity to quantum mechanical
problems. Indeed the linear structure of the polymer chain
makes it a one-dimensional quantum problem, however, with
a non-Hermitian Hamiltonian. Our approach to the solution
exploits this analogy by applying the so-called DMRG
method for quantum problems to find the properties of the
transition matrix M. In previous publications �7� the applica-
tion of this method to polymer motion has been described in
detail. Here we present only the results.

We confine ourselves to the renewal time and the diffu-
sion coefficient. The renewal time is usually defined at zero
driving field. Also the standard diffusion coefficient refers to
zero driving field. However, to determine the diffusion coef-
ficient we must turn on an infinitesimal field and compute the
drift velocity. This can be done by expanding the master
equation with respect to the field. The field enters in the bias
B which we represent as

B = exp��/2� , �2�

where � is a dimensionless parameter measuring the field
strength. Then we expand the master equation in powers of �

M = M0 + �M1 + ¯ , P�Y� = P0�Y� + �P1�Y� + ¯ ,

�3�

and obtain the equations

M0P0 = 0, M0P1 = − M1P0. �4�

The first equation is trivially fulfilled by a constant P0�Y�,
since the matrix M0 is symmetric and the right eigenvector
becomes equal to the trivial left eigenvector. The second
equation is a set of homogeneous linear equations for the
components of P1�Y�. It is soluble, since the right hand side
of the equation is perpendicular to the left eigenvalue �which
remains true to all orders is ��. So we can make the solution
definite by requiring that it is also orthogonal to the trivial
left eigenvector. P1�Y� yields the lowest order drift velocity
vd and the diffusion constant follows by the Einstein relation
as

D =
1

N
	 �vd

��



�=0
. �5�

IV. SCALING EXPONENTS

One of the advantages of the DMRG method is that it
calculates the properties, e.g., the gap, for a growing length
N of the chain. In principle, the method allows one to go to
any length, but it is in practice limited by instabilities and
computational time. We have speeded up the process by us-
ing the field inversion symmetry in linear order in �, both for
the gap and the diffusion coefficient. This makes the results
very well suited for a finite-size-scaling analysis. We convert
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the gap as function of N to a renewal time ��N�. In Fig. 1 we
present the local exponent zN, defined as

zN =
ln ��N + 1� − ln ��N − 1�

ln�N + 1� − ln�N − 1�
�

d ln �

d ln N
. �6�

The DMRG method gives values, accurate enough, such
that the small differences in �6� do not spoil the accuracy.
The various curves correspond to different values of h. Pre-
viously we found that it is most suggestive to plot � as func-
tion of N−1/2. This applies indeed for the case h=0, but for
nonzero values of h, a plot against N−1 gives more straight
curves. Some features are noteworthy.

�i� Chains of the order of N�100 are not yet in the
asymptotic regime �7�. So there are large corrections to scal-
ing. This is the origin of the earlier mentioned controversy
between theory and experiment. In particular the plateau in
the h=0 curve �the pure reptation case� may easily lead to
the conclusion that the exponent has settled on the �too large�
value.

�ii� The influence of small values of h is quite strong for
long chains in particular for small values of h. We come back
on this point when we discuss the crossover behavior.

�iii� The asymptotic behavior of the exponent �for N→��
differs for h=0 from all the other curves. While the theoret-
ical value z�=3 for reptation, is quite compatible with the
data, it is definitely excluded for the curves h�0. They
clearly point to the common value z�=2, which is character-
istic for Rouse dynamics.

In Fig. 2 we plot in the same way the local exponent xN
for the diffusion coefficient, defined as

xN = −
ln D�N + 1� − ln D�N − 1�

ln�N + 1� − ln�N − 1�
� −

d ln D

d ln N
. �7�

The picture has a similar message as the previous one. It is
clear that, without hernia motion �h=0�, the exponent
evolves towards the value 2, while for any nonzero value of
h, it aims at the value 1. Again one has large corrections to
scaling. These corrections make it impossible to determine
the exponent from ln-ln plots. Only due to the high accuracy

of the DMRG method one can derive exponents from formu-
lae like �6� or �7�.

In Fig. 3 we have made a plot of ln�� /N2� and −ln�DN�.
In both cases the asymptotic values N→� are plotted as
function of ln h. As one sees the curves are fairly straight,
with a slope −0.55, in the domain where the data are most
accurate. For very small values of h we see in the renewal
data a somewhat smaller slope, a trend which is also detect-
able in the diffusion data on closer inspection.

V. CROSSOVER SCALING

The point of crossover scaling is to represent the data for
various values of h in one single curve. Anticipating the
asymptotic values of the two regimes: h→0 and a fixed h
�0, the following representation is adequate for the renewal
time:

��N,h� = N3g�h�N� . �8�

The connection with the previous representation runs via the
relation

FIG. 1. The renewal time as a function of the length of the chain
for various values of the hernia creation/annihilation rate h.

FIG. 2. The diffusion exponent xN as a function of the length of
the chain for various values of the hernia creation/annihilation rate
h.

FIG. 3. ln-ln plots of the renewal time and the diffusion coeffi-
cient as function of h.
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d ln �

d ln N
= 3 +

d ln g�h�N�
d ln�h�N�

. �9�

We expect the crossover function g�x� to be expandable for
small arguments as

g�x� = g0 + g1x + ¯ �10�

and for large arguments as

g�x� �
1

x
	g−1 +

g−2

x
+ ¯ 
 . �11�

Inserting the asymptotic behavior �11� into �8� we obtain

ln��/N2� = ln g−1 − � ln h + ¯ , �12�

where the dots refer to corrections of order 1 /N. So the slope
in Fig. 3 gives the value of �. The value g�0� can be derived
from a plot of �N−3 vs N−1. We find the value g�0��0.2. In
Fig. 4 we have plotted the scaling function g as a function of
h0.55N. The observed data collapse is the proof for crossover
scaling. The deviation for small argument in Fig. 4 are due to
short chains. The scaling curve should aim, for small argu-
ments, at the value g�0��0.2, which we deduced from the
h=0 curve.

In Fig. 5 we plot similarly the diffusion coefficient in the
form

D�N,h� = N−2f�h�N� �13�

with the same value �=0.55. As one sees the collapse is
excellent. The crossover scaling function f approaches again
a finite value at x=0. In view of the data for the diffusion
coefficient at h=0 we have f�0�=0.4, which is quite consis-
tent with the behavior of the h�0 curves. For large argu-
ments, f�x� should behave as f�x→���x.

We hesitate to claim that the crossover scaling exponent
differs from the value �=1/2, which certainly gives a less
perfect data collapse. An argument in favor of �=1/2 is
based on the simple estimate of the times to remove a hernia
for the two mechanisms. As we mentioned, pure reptation

requires N4 single repton moves to refresh the chain as a
whole. On that time scale the hernias �in total of order N� in
the chain are annihilated and replaced by others. So it takes
N3 repton moves to forget a hernia by reptation. On the other
hand, direct change of a hernia by creation or annihilation
goes with a rate h /N. The fastest process dominates and the
competion is controlled by the ratio of the rates
�h /N� / �1/N3�=hN2. So the crossover scaling function
should be a function of the ratio hN2. It might well be that
the real asymptotic value for �=1/2 and that we see in the
window, where we have data, an effective exponent. This
looks similar to the story of the renewal exponent itself,
which also was estimated as 3.4, while the true theoretical
value is 3. As we mentioned we see in Fig. 3 a tendency to a
smaller slope for the very small h, which supports this pos-
sibility.

VI. DISCUSSION

We have presented a simple model which demonstrates
the crossover from reptation to Rouse dynamics. In the
Rubinstein-Duke model the links in the direction of the field
and those against the field cannot interchange and this makes
reptation a slow process. In our one-dimensional model, her-
nia annihilation and creation, allow the two types of links to
interchange and therefore these obstacles can be overcome.
In that sense they play the same role as the tube changes
which are typical for Rouse dynamics.

In a paper by Sartoni and Van Leeuwen �8�, the one-
dimensional reptation with hernia creation and annihilation,
has been connected to a simpler model of two types of par-
ticles, which move independently of each other along the
chain. They also conclude that the diffusion coefficient de-
cays as N−1, but they have to stick to a hernia creation and
annihilation rate equal to the hopping rate of the reptons.
Here we could vary this rate at will and therefore study the
crossover behavior. In a forthcoming paper we have related
their findings to the recently introduced necklace model
�9,10�.

FIG. 4. The crossover function g as defined in �8� as function of
the argument h0.55N. FIG. 5. The crossover function f as defined in �9� as function of

the argument h0.55N.
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